A synthetic congener modeled on a microbicidal domain of thrombin- induced platelet microbicidal protein 1 recapitulates staphylocidal mechanisms of the native molecule.
نویسندگان
چکیده
Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a staphylocidal peptide released by activated platelets. This peptide initiates its microbicidal activity by membrane permeabilization, with ensuing inhibition of intracellular macromolecular synthesis. RP-1 is a synthetic congener modeled on the C-terminal microbicidal alpha-helix of tPMP-1. This study compared the staphylocidal mechanisms of RP-1 with those of tPMP-1, focusing on isogenic tPMP-1-susceptible (ISP479C) and -resistant (ISP479R) Staphylococcus aureus strains for the following quantitative evaluations: staphylocidal efficacy; comparative MIC; membrane permeabilization (MP) and depolarization; and DNA, RNA, and protein synthesis. Although the proteins had similar MICs, RP-1 caused significant killing of ISP479C (<50% survival), correlating with extensive MP (>95%) and inhibition of DNA and RNA synthesis (>90%), versus substantially reduced killing of ISP479R (>80% survival), with less MP (55%) and less inhibition of DNA or RNA synthesis (70 to 80%). Interestingly, RP-1-induced protein synthesis inhibition was equivalent in both strains. RP-1 did not depolarize the cell membrane and caused a relatively short postexposure growth inhibition. These data closely parallel those previously reported for tPMP-1 against this strain set and exemplify how synthetic molecules can be engineered to reflect structure-activity relationships of functional domains in native host defense effector molecules.
منابع مشابه
Inhibition of intracellular macromolecular synthesis in Staphylococcus aureus by thrombin-induced platelet microbicidal proteins.
Thrombin-induced platelet microbicidal proteins (tPMP-1 and tPMP-2) are believed to initiate their staphylocidal effects via cytoplasmic membrane perturbation. The aim of the present study was to investigate the role of subsequent inhibition of macromolecular synthesis in the staphylocidal mechanisms of tPMP-1 and tPMP-2 in an isogenic tPMP-susceptible and -resistant strain pair (ISP479C and IS...
متن کاملThrombin-induced platelet microbicidal protein susceptibility phenotype influences the outcome of oxacillin prophylaxis and therapy of experimental Staphylococcus aureus endocarditis.
We previously showed that in vitro susceptibility profiles of Staphylococcus aureus to thrombin-induced platelet microbicidal protein 1 (tPMP-1) impacted the outcome of vancomycin treatment in experimental infective endocarditis. In this same model, treatment with oxacillin (a more rapid staphylocidal agent than vancomycin) enhanced the clearance of both tPMP-1-susceptible and -resistant cells ...
متن کاملFunctional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus.
Perturbation of the Staphylococcus aureus cytoplasmic membrane (CM) is felt to play a key role in the microbicidal mechanism of many antimicrobial peptides (APs). However, it is not established whether membrane permeabilization (MP) alone is sufficient to kill susceptible staphylococci or if the cell wall (CW) and/or intracellular targets contribute to AP-induced lethality. We hypothesized that...
متن کاملIn vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action.
Thrombin-induced platelet microbicidal protein-1 (tPMP-1) and human neutrophil defensin-1 (HNP-1) are small, cationic antimicrobial peptides. These peptides exert potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus. Evidence suggests that tPMP-1 and HNP-1 target and disrupt the bacterial membrane. However, it is not yet clear whethe...
متن کاملDiversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides.
Many antimicrobial peptides permeabilize the bacterial cytoplasmic membrane. However, it is unclear how membrane permeabilization and antimicrobial activity are related for distinct peptides. This study investigated the relationship between Staphylococcus aureus membrane permeabilization and cell death due to the following antistaphylococcal peptides: thrombin-induced platelet microbicidal prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 50 11 شماره
صفحات -
تاریخ انتشار 2006